Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 89(9): 094501, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30278759

RESUMO

We present the performance characteristics of a high-sensitivity radio receiver for the frequency band 0.5-470 kHz, known as the Low Frequency Atmospheric Weather Electromagnetic System for Observation, Modeling, and Education, or LF AWESOME. The receiver is an upgraded version of the VLF AWESOME, completed in 2004, which provided high sensitivity broadband radio measurements of natural lightning emissions, transmitting beacons, and radio emissions from the near-Earth space environment. It has been deployed at many locations worldwide and used as the basis for dozens of scientific studies. We present here a significant upgrade to the AWESOME, in which the frequency range has been extended to include the LF and part of the medium frequency (MF) bands, the sensitivity improved by 10-25 dB to be as low as 0.03 fT/ Hz , depending on the frequency, and timing error reduced to 15-20 ns range. The expanded capabilities allow detection of radio atmospherics from lightning strokes at global distances and multiple traverses around the world. It also allows monitoring of transmitting beacons in the LF/MF band at thousands of km distance. We detail the specification of the LF AWESOME and demonstrate a number of scientific applications. We also describe and characterize a new algorithm for minimum shift keying demodulation for VLF/LF transmitters for ionospheric remote sensing applications.

2.
Nature ; 437(7056): 227-30, 2005 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-16148927

RESUMO

The Van Allen radiation belts are two regions encircling the Earth in which energetic charged particles are trapped inside the Earth's magnetic field. Their properties vary according to solar activity and they represent a hazard to satellites and humans in space. An important challenge has been to explain how the charged particles within these belts are accelerated to very high energies of several million electron volts. Here we show, on the basis of the analysis of a rare event where the outer radiation belt was depleted and then re-formed closer to the Earth, that the long established theory of acceleration by radial diffusion is inadequate; the electrons are accelerated more effectively by electromagnetic waves at frequencies of a few kilohertz. Wave acceleration can increase the electron flux by more than three orders of magnitude over the observed timescale of one to two days, more than sufficient to explain the new radiation belt. Wave acceleration could also be important for Jupiter, Saturn and other astrophysical objects with magnetic fields.

3.
Nature ; 416(6877): 152-4, 2002 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-11894087

RESUMO

For over a century, numerous undocumented reports have appeared about unusual large-scale luminous phenomena above thunderclouds and, more than 80 years ago, it was suggested that an electrical discharge could bridge the gap between a thundercloud and the upper atmosphere. Since then, two classes of vertically extensive optical flashes above thunderclouds have been identified-sprites and blue jets. Sprites initiate near the base of the ionosphere, develop very rapidly downwards at speeds which can exceed 107 m s-1 (ref. 15), and assume many different geometrical forms. In contrast, blue jets develop upwards from cloud tops at speeds of the order of 105 m s-1 and are characterized by a blue conical shape. But no experimental data related to sprites or blue jets have been reported which conclusively indicate that they establish a direct path of electrical contact between a thundercloud and the lower ionosphere. Here we report a video recording of a blue jet propagating upwards from a thundercloud to an altitude of about 70 km, taken at the Arecibo Observatory, Puerto Rico. Above an altitude of 42 km-normally the upper limit for blue jets and the lower terminal altitude for sprites-the flash exhibited some features normally observed in sprites. As we observed this phenomenon above a relatively small thunderstorm cell, we speculate that it may be common and therefore represent an unaccounted for component of the global electric circuit.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...